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Abstract

Automatic Speech Recognition (ASR) is the core of interest for most recent ap-

plications, like voice search (VS), short message dictation (SMD) and others. One of

the challenges of the Speech Recognition (SR) process is human speech variations,

this is due to many factors like age, gender, nationality and level of education. Gen-

erally different languages, different dialects and pronunciation have a big effect as

well. Arabic language adds more challenges to SR than any other languages, this is

due to the large difference between Modern Standard Arabic (MSA) and regional

dialects in Arab countries.

In this research, we study the impact of Arabic dialects on the performance of

Arabic ASR. This is through using different adaptation and optimization techniques

in the Acoustic Model (AM). We find that using the state-of-art of Deep Neural Net-

work (DNN) improved the performance of ASR over the traditional Hidden Markov

model-Gaussian Mixture Model (HMM-GMM). And we get the best performance

when we have HMM-DNN with five hidden layers, 2048 hidden dimensions, Min-

imum Phone Error (MPE) optimization and Mel-Frequency Cepstral Coefficients

(MFCC) as feature extraction. But when we add DNN to the feature extraction

stage to have Bottleneck features BNF, we get better performance than using MFCC.

We should know that in feature extraction phase, we reduced the frame size to 20

millisecond (ms) and kept the time shift equal to 10 ms. This action increases the

overlap between frames and reduces the data lose.

In our research, we start with Dependent Dialect ASR (DD-ASR), we used four

different datasets sizes ranges between 2K to 50K utterances. We found that in-

creasing the size of training data enhances the performance of Arabic ASR. And



ii

the most important is adding Arabic dialect to training dataset which enhances the

performance as well. We compare the 50K utterance dataset of Modern Spoken Ara-

bic (MSA) only with the 40K utterance dataset of a mixture of Arabic dialect and

MSA. We get better performance while adding the dialect to training, this means

that data selection of training data is also important to improve the performance of

Arabic ASR despite the size of the training dataset size. Then we thought of mixing

all the dialects while training ASR to have Independent Dialect ASR (ID-ASR).

The performance of ID-ASR is better than DD-ASR.

For Language Model (LM) phase, We generate the LM using the text of the

training dataset for each experiment. So the size of training data affects the LM as

well.

Also through our different experiments, we find that feature-space Maximum

Likelihood Linear Regression (fMLLR) and Maximum A Posterior( MAP) act the

same while using only one dialect trained ASR. But when we train ASR on multiple

dialects MAP has better performance than fMLLR.

Our results show that employing DNN technology in any phase of ASR enhances

the performance of Arabic ASR. As we used this technology to generate feature

vector (Bottleneck features) and used it in the Acoustic Model phase.
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Chapter 1

Introduction

1.1 Overview

Automatic Speech Recognition (ASR) is one of the most popular research area in

our days. ASR is a technology used to convert speech into text. This conversion

creates a revolution in developing applications. The widespread of smart phones

increases the necessity of these applications as well. Some of these applications are

voice search like Siri in IOS systems, car navigator that allows the driver to tell the

destination in speech, communicating with people with hearing problems and much

more.

Because of the importance of ASR, more research is being done in this field. All

the work is trying to improve the accuracy of the conversion process, they tried to

work on feature extraction techniques, algorithms used in Acoustic model in order

to handle the exacted features, Language Model (LM) and hardware[1]. Developing

ASR is not an easy job. There are 7.5 billion human being living on this planet[2].

This huge number of people means 7.5 billion different voice print. This also means

there are so many languages. Each language is facing the problem of different di-

alects, which is having different words for the same meaning. Geographical place of
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living, different immigrants from different countries and different occupation are fac-

tors of having different dialects. For example: in Egypt, people say Arabeya (which

means a car), whereas in Levantine, people say Sayyara, neither will understand the

word immediately.

Arabic Language in particular is facing an added challenge since Arabic countries

were occupied by different foreign countries. This affect the Arabic Language that

sometimes you can’t recognize the spoken language as it is a different language. Also

when we talk about Arabic Language, diacritics is the first to think about. Diacritics

is a special property for Arabic Language, which change the meaning of the word

even if the words have the same letters. For example: É
�
Ô

�
g
.
jamal means camel

but
�

É
�
Ô

�
g
.
jomal means sentences. In this thesis, we focused on the most common

and popular dialects in the Arabic countries, shown in figure1.1.1[3]; such as Gulf,

Egyptian, Levantine (Jordan, Syria, Lebanon and Palestine), Maghrebi (Morocco,

Algeria, Tunisia, and Libya) and MSA. See next section1.1.1 for more details about

Arabic dialects.

1.1.1 Arabic language

Figure 1.1.1: Different Arabic dialects used in this research

Arabic language is one of the most talked language in the world. About 420
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million people speaks Arabic all around the world[4, 5]. Generally Arabic language

is written from right to left, written in cursive style and have 28 letters, 3 long

vowels, 3 short vowels, 3 for double diacritics and some added letter, in total 39

phoneme as shown in table 1.1[6, 7], and each phoneme has a special symbol given

by International Phonetic Alphabet (IPA). In addition, we should know that Arabic

Language has a special property, which is diacritics. The same letter has a different

phone depending on the diacritics used for this letter �
ð , ð

�
,

�
ð ,

�
ð ,

�
ð which is w, wi,

wo, wa and ww from left to right, this variety for each letter enlarge the data base

for Arabic Language. If diacritics were not included in the training of the ASR,

many phonics will not be included in the system, which will increase the error rate.

Arabic Language can be classified into two main groups: MSA, which is the written

language which follow all the rules of writing and diacritics and the Spoken language

which is dialects in other words. Next we will explain both classes briefly.

Table 1.1: Arabic phonemes

# Name English

Translation

Phoneme sym-

bol in IPA

Arabic

Unicode

Example of pronunci-

ation in English

1 ’alef ’/ā /a:/ ø , @ father

2 ba’ b /b/, /p/ H. bee

3 ta’ t /t/ �
H tree

4 tha’ th /θ/ �
H three

5 jeem j , g /Z/, /g/ h. jam or gorge

6 hā’ h. /h/ h —-

7 khā’ kh /x/ p ioch(Scottish)

8 dāl d /d/ X door

9 dhāl dh, th /ð/ 	
X the

10 rā’ r /r/ P rabbit
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11 zain z /z/ 	P zoo

12 seen s /s/ � see

13 sheen sh /S/ �
� show

14 s.ad s. /sQ/ � massage

15 d. ād d. /dQ/ 	
� —-

16 tā’ t. /tQ/   star

17 zā’ z. /ðQ/ 	
  —-

18 ’ayn ’ /Q/ ¨ no equivalent

19 ghayn gh /y/ 	
¨ mercie(French)

20 fā’ f /f/ 	
¬ fish

21 qāf q /q/ �
� queen

22 kāf k /k/ ¼ kite

23 lām l /l/ lemon

24 meem m /m/ Ð man

25 noon n /n/ 	
à nest

26 hā’ h /h/ è horse

27 wāw w,ū, aw /w,/u:/,/aw/,

/u/, /o:/

ð window

28 yā’ y,̄i, ay /j/, /i:/, /aj/ ø



yes

29 hamza P Z the pause in UH-OH

30 va v /v/ �
¬ virus

31 LV ’lef aa /a:/ @ @ man

32 LV wāw oo /oo/ ðð tool

33 LV yā’ ea , ee /ee/ ù


���K
 sleep

34 SV ’a a /a/
�
@

35 SV ’u u /u/
�
@
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36 SV ’i i /i/ @�

37 ’an an /an/
�
@

38 ’on on /on/
�
@

39 ’in in /in/ @
�

Notes: LV stands for Long vowel. SV stands for Short vowel.

1.1.1.1 Modern Spoken Arabic (MSA)

The language of literature and the written media such as books, newspapers, maga-

zines, official documents, private and business correspondence, street signs and shop

signs. Also it is the language of news broadcasts on radio and television[8, 9].

1.1.1.2 Other dialects

Everything other than MSA is spoken Arabic. In other words it is dialectal speech.

There are many dialects in Arabic Language and this is due to many reasons, such

as different foreign occupation for Arabic countries, Arabic speakers is moving into

different regions of Arabic world which introduce new words to the language, and

by time it becomes part of it and sometime the pronunciation of the word changed.

Research classified Arabic dialects into five main groups depending on the geo-

graphical place and number of population[4, 10].To know more about the difference

between the Arabic dialects, check the examples in table 1.2 below. The major

Arabic dialects are:

1. North African Arabic that includes: Morocco, Algeria, Tunisia and Libya.

Their structure and words are rare, and it is a challenge to understand even

to Arabic speakers. Berber and Spanish Languages influence it.

2. Egyptian Arabic. More than 80 million speak this dialect. It is widely known

in the Arabic countries due to the media industry.
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3. Levantine Arabic that includes: Lebanon, Syria, Jordan and Palestine. British

and French languages influence this dialect.

4. Iraqi Arabic. It is geographically close to Arabic Gulf but it has its own

characteristic in pronunciation.

5. Gulf Arabic that includes: Kuwait, Bahrain, Qatar, the United Arab Emirates

and Oman. Gulf dialect is the closest spoken dialect to MSA with major

differences.

Table 1.2: Example shows how major Arabic dialects are different

Dialect name Example1 Example 2 Example 3

MSA Arabic letters
�
@Q�


�
J» YK
P


@

�
è

@QÖÏ @

English a lot want woman

MSA IPA symbols kaθeeran ’ureedu ’lmar’ah

Tunisian barSa nbvit lu mra

Algerian bezzaf nbvit lu mra

Moroccan bezzaf bavi lu mra

Egyptian kiteer Qayza esittat

Lebanese kteer bedde lmara

Iraqi kulliS reddet limrayyat

Gulf wayed ’be alhareem

1.1.2 Objectives

The main objective of this thesis is to investigate how close the regional Arabic

dialects to Modern Spoken Arabic MSA. The problem we are trying to solve is the

degradation of Arabic ASR performance because of huge dialect variation in Arabic

language. In this thesis, we focus on the most common and popular dialects in the

Arabic countries, such as Gulf, Egyptian, Levantine (Jordan, Syria, Lebanon and
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Palestine), Maghrebi (Morocco, Algeria, Tunisia, and Libya) and MSA.

The followings are the main objectives of this thesis:

• Investigate the impact of dialect variation on state-of-the-art Arabic ASR that

uses DNN for acoustic models and compare this with the traditional ASR that

uses GMM for acoustic models.

• Apply the state-of-the-art techniques for Arabic dialect recognition, such as

DNN, different Adaptation techniques used for AM (MAP, FMLLR and combi-

nation for both), different optimization techniques (MPE, MMI with different

values of boost), and compare the results of these systems.

• Train ASR with all dialects and compare results with dialect only trained and

MSA only trained ASR.

• Make the results of all experiments available and accessible to the public.

1.1.3 Research questions

The followings could be research questions to be address in this project:

• How different the impact of each major dialect on the ASR trained on MSA

dataset.

• How well the Arabic ASR improves by adding dialectal data to the training

dataset.

• To what extent the prior knowledge of true dialect of speaker can improve the

speech recognition performance.

• How well state-of-the-art techniques that are mainly based on DNN can ac-

commodate dialect variation for Arabic ASR.
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1.2 Relative studies

According to the people desire to build an automatic computer model to emulate

human verbal communication skills. Speech Recognition make this desire come true,

so it is possible for computer to understand human speech in different languages[11].

Most research in ASR are trying to improve the accuracy through reducing Word

Error Rate (WER). In order to achieve this improvement, each research spotted

light on some aspects that might reduce WER. Some research like [12] recommends

maximizing computation platforms through the adaption of parallel multi-core pro-

cessors(hardware level). This adaption will reduce the sequential overhead and en-

hance the performance of ASR. The enhancements on ASR are through enhancing

the accuracy of speech to text in all conditions of noise and non ideal circumstances

while speaking, increasing recognition efficiency in order to increase throughput and

reducing time consuming to real time.

Another approach to improve the efficiency of the ASR is data selection. Dif-

ferent techniques of data selection was used in [13, 14, 15, 16, 17, 18], but they

concluded that reducing the training dataset to most reliable subset will do this

improvement. For [14] data selection has improved the accuracy by 4% compared

with using all the dataset.

There are research done in investigating Arabic ASR as well. There are com-

mercial versions of ASR trained on MSA and it is running with high performance.

However, when these ASRs used for spoken language, they fail and had a high WER.

This proves the big difference between the spoken dialects and MSA. Researchers

tried several techniques to solve this problem. Biadsy et al[9, 19] ran experiments

to study the effect of using a specific ASR for each Arabic dialect, they used the

average of 70 hours for training for each dialect. They found that when ASR is
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trained for a specific dialect, this enhanced ASR performance for each dialect. This

means that we have to detect the dialect to run its proper ASR.[9] also discussed

pronunciation model and how different models affect ASR performance. Najafian

worked in her PHD thesis[20] on the same idea of detecting the dialect will reduce

the WER and enhance ASR performance, but she studied English dialects not Ara-

bic, she used 10 hours for training, Najafian found that dialect mismatch between

training and testing could increase the WER by seven times compared with using

the same dialect in testing and training .

Another approach is through changing the used algorithms used in each phase in

the ASR. For Acoustic Model (AM) phase, Hidden Markov Model (HMM) is used

to model the sequential structure of speech signals, each state is using Gaussian

Mixture Model (GMM) to model spectral representation. In addition, this was the

state-of-the-art and each research in Speech Recognition starts from this point. Re-

cently GMM is replaced with Deep Neural Network (DNN), which is many layers of

features and great number of parameters. The results show that DNN outperformed

the performance of ASR [21]. DNN requires a high computational resources but on

the other hand it enhances the recognition[22]. [23] shows results of using GMM

and results of using DNN, these results shows that using DNN is reducing WER by

9.79% comparing with GMM model.

Al-Haj et al[24] searched Arabic ASR, especially how to improve the Iraqi ASR,

their work was at the pronunciation lexicon. Arabic language is rich enough to have

same letters with different meanings when diacritics used as mentioned earlier. So

they add the short vowels to their lexicon. This action has reduce the WER by 2.4%

comparing of their base system of not including the short vowels.

Patrick Cardinal et al[25] researched Arabic ASR and tried most used techniques
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to improve the performance of Arabic ASR. They have 50 hours of recorded audio

from AlJazeera news. They had achieved the best results so far for Arabic ASR,

they had 17.86% in broadcast reports and 29.85% in broadcast conversation. They

used Kaldi[26] toolkit for all the used models. They proposed several systems with

different techniques for both GMM and DNN based Acoustic Model. Their results

shows that broadcast reports has better accuracy than broadcast conversations. The

best result they have got when they used DNN, ivector, fMLLR and MPE. Recent

research is trying to involve DNN in all phases of ASR since DNN shows great

improvement in the performance. So they used DNN in feature extraction phase

with a technique called bottleneck features (BNF). BNF improves the performance

of basic GMM system by 3.5% relatively for reports and conversations together[25].

Patrick Cardinal et al also applied I-vector, which used to adapt the speaker and

the channel in the process of speech recognition. They applied i-vector with DNN

based system. This also improved the performance of the ASR. So as a conclusion

for Patrick Cardinal et al research, the best performance was achieved in the DNN

based system with feature-space Maximum Likelihood Linear Regression (fMLLR),

i-vector and Minimum Phone Error (MPE) techniques, and the performance was

25.78% for using conversations and reports together.

Yan et al[27] tried to improve BNF. As they used 309-hour SwitchboardI to

train DNN and set its parameters in DNN based AM. They used the trained DNN

as feature extraction with 2000 hour training data to train HMM-GMM, this action

reduces the WER by 1.6% comparing with HMM-DNN based AM. Their system can

be described as DNN-GMM-HMM. Yu et al[28] also used DNN as feature exaction.

Their study shows that using unsupervised pre-training of DNN has enhanced BNF

and they also find that using DNN trained to predict context dependent senone tar-

get labels produces better BNF. Using the combination of both mentioned strategies

has improve the performance of ASR by 16% compared with conventional method
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for training BNFs.

Elmahdy et al[29] researched Arabic dialects, especially Egyptian dialects. They

trained their system on both MSA and spoken Egyptian dialect, which increase

the phoneme generated in AM. They found that using some adaptation techniques

like Maximum Likelihood Linear Regression (MLLR) and Maximum A-Posteriori

(MAP) improve the speech recognition, as using the combination of both tech-

niques reduced the WER by 17% comparing with the same system without using

these adaptation techniques.

Ali et al[30] also researched Egyptian dialects. But they applied different ap-

proach than working on the AM. Because of the sparseness of Arabic audio dataset,

they tried to overcome this problem by using the dialectical tweets on Twitter to

build their LM. This action reduced the out-of-vocabulary (OOV) from 15.1% to 3.2

and the most important that this action reduced the WER from 59.6% to 44.7%.

They also tried to compare using all tweets or only Egyptian tweets to check the

performance of Egyptian ASR. They found that having only Egyptian tweets has

lower WER by 3.4% as mentioned earlier in [14]. Depending on the last two men-

tioned research, we can conclude that the enhancement in the performance of Speech

recognition can be done at the AM and LM.

Najafian[20] in her PHD thesis studied 14 different dialects of British Isles, she

used ABI corpus for evaluation and WSJCAM0 corpus for training. She focused on

the effect of these different dialects on the performance of the ASR. She concluded

that to achieve better performance of ASR with the existence of many different di-

alects to combine different approaches. For example to have dialect identifier within

the feature extraction phase which, trigger a dialect related pronunciation dictio-

nary. This means that the best performance can be achieved by working on all ASR
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component. Most of Najafian was at the Acoustic Model, tried several acoustic

modeling techniques to reduce the effect of different dialects on the performance

of ASR. Also discussed the model selection approach that depend on Automatic

Dialect Identification (ADID). I-vector, phonotactic and ACCDIST-SVM are dif-

ferent systems used as ADID, each focuses on some property of speech. She also

used Expectation Maximization-Principal Component Analysis (EM-PCA) and Lin-

ear Discriminative Analysis (LDA) to investigate the different dialect spaces. Then

used this investigation to analyse the ADID and ASR. In GMM-HMM based AM

, she found that the maximum reduction in WER was achieved by using ADID to

select a specific dialect model followed by speaker adaptation. About HMM-DNN

based AM, her research also showed that this model outperformed the traditional

model.

In our research, we use two different computers with different hardware charac-

teristics. The computation time for each computer to finish the same task varies.

The better hardware proprieties reduce the computation time, and this proves the

recommendation of [12]. Also we investigate the effect of training data size verses

the variety of the training data, we find that the variety of training data is more

important than the size of the training dataset, this proves the recommendations of

[13, 14, 15, 16, 17, 18]. In addition, we have GMM and DNN based AM, we find

that DNN based AM improves the performance of ASR as [21]. Moreover, we used

Qatar Computing Research Institute (QCRI) 2014 Lexicon[31] that was released on

17 March 2014, and yet no newer version of phonetic dictionary is published. Also

we discuss some adaptation and optimizing techniques. Finally, we involve DNN in

feature extraction phase, and DNN proves its reliability to improve the performance

of ASR, this proves the recommendation of Patrick Cardinal et al[25].
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1.2.1 Thesis outline

The rest of this thesis is organized as follows. Chapter2 gives brief information

about ASR, how it works and its components starting front-end until we get word

transcriptions. Chapter 3 introduces the used toolkit and computer resources in our

experiments, and explains the experiment names and abbreviation. Also discusses

different strategies to study the effect of different dialects on Arabic ASR. Chapter

4 shows all the results we got in our experiments. Chapter 5.1 provides conclusions

about the whole work and provides some recommendations for future work.
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Chapter 2

Automatic Speech Recognition ASR-

Background

In this chapter, we explain the component of ASR and how those component engage

together in the conversion of the speech into text.

Figure 2.0.1: Automatic Speech recognition main components that handle the
speech till we have the text

ASR is a technology that converts the speech into text. Figure 2.0.1 shows

the main component of the ASR that converts speech into text. The procedure of

conversion can be summarized in the following:

1. The speech, in our case, the speech is the dataset that will be introduced

in section 3.2. This speech is being processed in the front end for feature

extraction, Mel-Frequency Cepstral Coefficients (MFCC), Filter Bank (Fbank)

and Perceptual Linear Prediction (PLP) are the most common techniques used

for the feature extraction[32], explained more in section 2.1. The output of

this stage will be a feature vector.
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2. The feature vector will be the input for the AM, despite the used model HMM-

GMM or HMM-DNN. The output will be sequence of phones or candidate

phones. Considering that Arabic language has 39 phoneme listed in the table

1.1. Each phoneme pronounced in different way, depending on its location

in the word (context), its diacritics, and many other factors such as dialect,

speaker, gender, age, health situation, emotional state etc. Because of all these

factors, each phoneme has several phones.

3. Those phones used as input to the phonetic dictionary, since each phoneme

has several phones. Select the best match phones to make a useful word. In

addition, at this step the algorithm selects the best matches for each word in

order to have the best context later.

4. The generated set of words will be the input to LM. This step is to determine

the context of the sentences, the best matching words was found using Bayesian

rule, see section 2.5 for more details. The output will be the text.

2.1 Feature extraction

The feature extraction phase transforms the signal of speech into feature vectors.

The most used feature extraction techniques are; MFCC, Fbank and PLP. Each one

will be explained in the following subsections.

2.1.1 MFCC

Now we will explain how MFCC features extraction technique works. Figure 2.1.1

shows MFCC diagram and how speech signal is transformed into feature vectors.

Next, we explain each step [20, 33]:
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Figure 2.1.1: MFCC diagram

1. Pre-emphasize: The transformation of the signal starts with applying a high

pass filter to emphasize higher frequencies as shown in equation 2.1.1, where

α is a parameter and its value varies between 0.95 and 0.99. High pass filter

trying to separate the speech from noise.

HP (z) = 1− αz−1 (2.1.1)

2. Framing: The signal from the previous step is segmented into short period

blocks of 20-30 ms called frames. Frame rate is the rate of capturing the

signal and usually it is 10ms. There is an additional technique used which

is overlapping; this technique is used to reduce the lost data by the frame-

capturing rate. Figure2.1.2 explains this technique.

Figure 2.1.2: Overlap framing to reduce the data lose[34]

3. Windowing: Usually hamming window used to keep continuity of the resulted

frames from the previous step. Therefore, each frame is multiplied with the
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hamming window. So if we present the frames with f(n), where n is the number

of the frame n = {1, ..., N}, so the result will be W (α) ∗ f(n). The result of

this multiplication is resulted in equation 2.1.2. The value of α is set to 0.46

through practice.

W (n, α) = (1− α)− α cos(
2πn

N − 1
), α = 0.46 (2.1.2)

Figure 2.1.3: The hamming window presented with different value of α [35]

4. Fourier Transform: The DFT is short for Discrete Fourier Transform. The

resulted frames after the window hamming is transformed from time domain

into frequency domain using DFT.

5. Mel-frequency wrapping: The output spectrum from the previous step is trans-

formed into Mel-frequency domain using Mel-scale bandpass filterbank which

is shown in equation2.1.3, where Mel(f) is Mel-frequency and f is frequency.

Mel(f) = 2595log10(1 +
f

700
) (2.1.3)

Mel-scale bandpass filterbank consists of number of triangular bandpass filters,
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those filters are used to reduce the feature size and to smooth the spectrum.

Let we denote the triangular bandpass filter withHm(n) where m is the number

of filter bank channels m = {1, 2, ...,M}, n is the frame number. The log

spectral energy vector Xm can be calculated as shown in equation 2.1.4, where

Xn is the power spectrum at frame n.

Xm =
N∑
n=1

ln[|Xn|2Hm(n)] (2.1.4)

6. Log: Log function is applied to compress the spectral energy vector resulted

from previous step.

7. DCT: which is short for Discrete Cosine Transform. Applying DCT to the

compressed spectral energy vector will reduce the correlation between the dif-

ferent components of an acoustic vector. Equation2.1.5 showed the generated

MFCC coefficients. Where c(i) is the i-th MFCC coefficient. The number of

MFCC coefficients are 13.

c(i) =

√
2

M

M∑
m=1

Xm cos(
πi

M
(m− 0.5)) (2.1.5)

2.1.2 Fbank

Filter bank is another feature extraction technique. In addition, it is almost the same

as MFCC but without applying DCT. This means that fbank is higher dimensional

than MFCC. This technique is used with DNN based model since the correlation

between the different components of an acoustic vector is not a problem for DNN

based model.

Figure 2.1.4: Filter bank diagram
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2.1.3 PLP

PLP is another technique used for feature extraction. Figure2.1.5 shows how PLP

converts speech into feature vector. Now let’s explain this transformation[36]:

Figure 2.1.5: Perceptual Linear Prediction (PLP) diagram[36]

1. Spectral analysis: The analysis of the spectrum is similar to MFCC in this

stage, so it applies equation2.1.2 for hamming window, then DFT is applied

as well but it is more common to apply Fast Fourier Transform FFT. How-

ever, the power spectrum is produced in a different perspective as shown in

equation2.1.6. Where Re[S(ω)] is the real component of short term speech

spectrum, IM [S(ω)] is the imaginary component of the short speech spec-

trum and ω is the angular frequency in rad/sec, and can be calculated using

equation 2.1.7.

P (ω) = Re[S(ω)]2 + Im[S(ω)]2 (2.1.6)

ω = 1200π sinh

(
Ω

6

)
(2.1.7)

2. Critical band analysis: The power frequency is wrapped into Bark frequency

Ω as shown in equation 2.1.8

Ω(ω) = 6ln

(
ω

1200π
+

√
(

ω

1200π
)2 + 1

)
(2.1.8)

Then the Bark frequency is convolved with the power spectrum of the simu-

lated critical-band masking curve Ψ(Ω). The critical band- curve is given by
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equation 2.1.9.

Ψ(Ω) =



0 for Ω < −1.3

102.5(Ω+0.5 for −1.3 ≤ Ω ≤ −0.5

1 for −0.5 ≤ Ω ≤ 0.5

10−1(Ω−0.5) for 0.5 ≤ Ω ≤ 2.5

0 for Ω > 2.5

(2.1.9)

The discrete critical- band masking curve Ψ(Ω) with the Power spectrum P (ω)

gives critical-band power spectrum, which is described clearer in equation

2.1.10

θ(Ωi) =
2.5∑

Ω=−1.3

P (Ω− Ωi)Ψ(Ω) (2.1.10)

3. Equal-loudness pre-emphasis: At this step, modeling human hearing process

and taking care of higher frequency that the human can analyze. This pro-

cess is denoted by Ξ(Ω(ω)), and can be found using equation 2.1.11, where

Θ((Ω(ω)) is the pre-emphasized sample by the equal loudness curve, and E(ω)

is an approximation to the unequal sensitivity of human hearing at different

frequencies.

Ξ((Ω(ω)) = E(ω)Θ((Ω(ω)) (2.1.11a)

E(ω) =
(ω2 + 56.8× 106)ω4

(ω2 + 6.3× 106)2 × (ω2 + 0.38× 109)× (ω6 + 9.58× 1026)
(2.1.11b)

4. Intensity-loudness power law: Amplitude compression is taking place to simu-

late Stevens law of hearing[37]. This compression is also applied to reduce the

spectral amplitude variation of the critical band spectrum. Equation 2.1.12
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shows the compression process.

Φ(Ω) = 3
√

Ξ(Ω) (2.1.12)

5. Inverse Discrete Fourier Transform IDFT and Autoregressive Coefficients:

IDFT is the auto-correlation method used in PLP, and it is applied to Φ(Ω).

The first M+1 auto-correlation values are used for auto-regressive coefficients

of All-pole-model

6. Note to be considered in practice: The convolution and the pre-emphasis are

carried out for each sample of Ξ(Ωk) in the P (ω) domain by one weighted

spectral summation per spectral sample Ξ(Ωi). The spectral sample can be

calculated using equation 2.1.13, where Wi is the weighing function.

Ξ(Ω(ωi)) =

ωih∑
ω=ωi1

Wi(ω)P (ω) (2.1.13)

As mentioned earlier that MFCC and PLP are the most common used tech-

niques for feature extraction. Choosing between them depends on the task.

Honig et al[32] provide a comparison between MFCC and PLP, and tried to

enhance the performance of both (MFCC and PLP) by carrying on the best

features from both to provide a better technique.

2.2 Phonetic dictionary

It is the same as pronunciation dictionary. As we mentioned earlier that each

phoneme has several phones. This dictionary has the possible phones for each

phoneme. It is used to match the possible sequence of phonemes, which are used

in composing the words from selected phones. Phonetic Dictionary is the only con-

nection between HMMs and language model. Qatar Computing Research Institute
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(QCRI)[31] released an Arabic phonetic dictionary for Modern Standard Arabic

ASR on 17 March 2014, and yet no newer version of phonetic dictionary is pub-

lished. Figure 2.2.1 shows a screenshot from QCRI lexicon.

Figure 2.2.1: Sample of QCRI phonetic dictionary

2.3 Language Model (LM)

As we described earlier, ASR generates list of words. But how we can select the best

match of consecutive words. This is the main job of the Language Model (LM). LM

doesn’t rely on AM, however it is created by finding the probability of different word

strings of the studied dialect (in our case). The model that assign these probabilities

to sequence of words is the N-gram, where N is the number of the sequence of words,
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the most used N is N=1, 2, 3. When N=1, we got 1-gram which is known as uni-

gram, and when N = 2 or 3 it is known as pigram or trigram respectively, see

table 2.1 to differentiate between the N-gram LM. Therefore, we need to calculate

the probability of a word in given utterance. Let us have the following example:

P( �
é�PYÓ|ú




�
æ�PYÓ ù



ë

�
éJ
ÓA

	
¢

	
JË @

�
é�PYÓ), this example calculates the probability of word

" �
é�PYÓ" in the given utterance "ú




�
æ�PYÓ ù



ë

�
éJ
ÓA

	
¢

	
JË @

�
é�PYÓ" which is 0.25. This

simple example for unigram is applied to LM with only the given small sentence.

But if the question is what is the probability to have "ú



�
æË@" after the given utterance

above. We need to check a big dataset and check for the same utterance and how

many times ú



�
æË@ comes after it[38].

In general the probability of each word wi in N-gram LM is depending on the N-1

words prior this word as shown in equation 2.3.1, where N < k + 1.

Table 2.1: An example on N-gram language model

N-gram Known as How this N-gram LM looks

like

P(I,love, my, daughter)

1-gram Uni-gram s, I , love , my , daughter, s P(I) P(love) p(my)

p(daughter)

2-gram Bigram s I, I love, love my, my

daughter, daughter s

P(I|s) P(love|I)

p(my|love) p(daughter|my)

p(s|daughter)

3-gram Trigram s I love, I love my, love my

daughter, my daughter s

P(I|s,s) P(love|s,I)

p(my|I,love)

p(daughter|love,my)

p(s|my,daughter)

Note that s is a symbol added at the beginning and the end of the sentence.
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p(w) '
K∏
k=1

p(wk|wk−1, wk−2, ..., wk−(N−1)) (2.3.1)

For three words wk, wk−1, wk−2, let count C(wk−2, wk−1) represents the number

of occurrences of the two words wk−2, wk−1 and C(wk−2, wk−1, wk) represents the

occurrences of the three words wk−2, wk−1, wk, the probability of occurrence of wk

given wk−1 and wk−2 can be calculated using equation 2.3.2.

p̂(wk|wk−1, wk−2) =
C(wk−2, wk−1, wk)

C(wk−2, wk−1)
(2.3.2)

There is one problem facing this estimate, which is the out-of-vocabulary OOV

words. OOV is the terms or words that exist in the testing dataset but did not

appear in the training dataset. A modification should be done to equ 2.3.2 to solve

this problem. This modification can be done by applying backing-off and discounting

parameters[39, 40]. The modified calculation is shown in equation 2.3.3, where d

is the discount coefficient, α is the back-off weight and C’ is the count threshold.

So when there is a tri-gram sequence {wk−2, wk−1, wk} and their occurrences are

less than C’, then the probability based on the occurrences of the shorter context

{wk−2, wk−1}, which is referred to backing off.

p̂(wk|wk−1, wk−2) =


C(wk−2,wk−1,wk)

C(wk−2,wk−1)
C(wk−2, wk−1, wk) > C ′

dC(wk−2,wk−1,wk)

C(wk−2,wk−1)
0 < C(wk−2, wk−1, wk) ≤ C ′

α(wk−2, wk−1) p(wk|wk−1) otherwise

(2.3.3)

2.4 Acoustic Model (AM)

All proposed models in AM have Hidden Markov Model HMM as main part of them.

That is because all Large Vocabulary Continuous Speech Recognition (LVCSR)
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systems are based on HMM. HMM is able to characterize the observed time-varying

speech data sample[20, 41].

Figure 2.4.1 shows a five state Markov chain, but S0 and S4 are start and end

states respectively, and they are non emitting states. Each state corresponds to

an observable event q at given time t. The process starts from the start state and

transitions successively to the rest of the state. A probability function is assigned

to every transition called transition probability. Also as shown in figure2.4.1, there

is an output probabilities fi(Ot), where O is an observation sequence given as O =

{o1, o2, ..., oT} at each given time t.

Figure 2.4.1: Hidden Markov Model (HMM)[42]

The HMM parameters for a given model are[43]:

1. Initial state occupation: π = {πi}, is an initial state occupation probability

vector. In other words it is the probability at the first state i as shown in

equation 2.4.1.

πi = p(q0 = si) where 1 ≤ i ≤ N ; andN is the total number of states

(2.4.1)

2. Transition probability: All transition probabilities are defined by matrix A.
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A = aij can be calculated as shown in equation 2.4.2, where time t at state i

is t − 1 and t at state j. As it is probability, all probability rules are applied

such as aij ≥ 0 and
∑N

j=1 aij = 1, where N is the total number of states.

aij = p(qt = sj|qt−1 = si) (2.4.2)

3. Output probability: is set of observation Probability Density Functions (PDFs).

fi(Ot) is a set of PDFs output, where the observation PDF given HMM state

i for D-dimensional observation vector ot. For more details on HMM, check

[43, 41]

2.4.1 HMM-GMM

As described earlier in the last section, HMM proved its ability of observing time-

varying speech data sample. GMM is one of the most important probability density

functions applied to continuous measurements, such as speech feature vector. The

output probabilities are expressed as a weighted sum of M Gaussian component

densities. So multivariate Gaussian mixture distribution is used to describe fi(Ot)

as shown in equation 2.4.3, where T is a symbol means transpose operation, ci,m is

the weight for state i, µi,m is the mean vector and Σi,m is the covariance matrix for

each mixture component, m = 1, 2, ...,M . ci,m are positive and satisfy the constraint∑M
m=1 ci,m = 1.

fi(Ot) =
M∑
m=1

ci,mN (ot|µi,m,Σi,m) (2.4.3a)

N (ot|µi,m,Σi,m) =
1

(2π)(1/2)|Σi,m|1/2
exp

[
−1

2
(ot − µi,m)TΣ−1

i,m(ot − µi,m)

]
(2.4.3b)

There are some issues should be discussed about HMMs models before putting

them into practical applications[44, 45]:

1. Likelihood evaluation of HMM using the forward algorithm that lets us choose
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a model which best matches the sequence of observations. Use the principles

of Bayesian rule when we have a given model and a sequence of observations

O = {o1, o2, ..., oT}, in order to find the probability that the observed sequence

was produced by model λ which is declared by p(O|λ). The total likelihood

of model can be estimated using the forward algorithm (probability) αi(i)

and is calculated using equation 2.4.6. The forward probability is computed

through time t where 1 ≤ t ≤ T for all states of the Hmm. The backward

algorithm is required for estimating the state occupancy’s. The backward

algorithm (probability)βi(i) is calculated using equation 2.4.7. The backward

probability is computed through time t where T − 1 ≤ t ≤ 1 for all HMM

states.

2. Estimating the HMM parameters: HMM is adjusted to become λ̂ in order

to maximize the probability p(O|λ). The Baum-Welch algorithm2.4.1.1 is

used for learning the HMM models to describe the training data and innovate

models that fits the training data.

3. Decoding HMM state sequences: Given a model λ and a sequence of ob-

servations O = {o1, o2, ..., oT}, finds the best corresponding single best state

sequence Q = {q1, q2, ..., qT} that best explains the observations. The Viterbi

algorithm is used for decoding HMM state sequences.

2.4.1.1 The Baum-Welch algorithm and HMM parameters

This algorithm is used to solve one of the main issues of HMM, which is estimating

the parameters. EM algorithm [46] addresses the problem. The Baum-Welch algo-

rithm is a generalized implementation of EM. For a given model λ, the Baum-Welch

algorithm estimates the HMM parameters using the EM iterative process which

adjust λ to become λ̂ in order to maximize the probability p(O|λ).
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p(O|λ̂) > p(O|λ) (2.4.4)

The data of EM consists of sequence of observed data O = O1, O2, ..., OT and

sequence of hidden state Q = q1, q2, ..., qt. The iterations of EM algorithm leads to

the maximum likelihood estimates of model parameters. Each iteration consists of

Expectation stage and Maximization stage.

1. Expectation: The posterior probability given the current HMM parameters is

computed during the Expectation stage. With the m-th mixture component

accounting for state sequence observationsO = {O1, O2, ....Ot}, the probability

of being in state i at time t is denoted by γt(i,m) which is shown in equation

2.4.5. Where αi(i) is the forward probability, βi(i) is backward probability

and q_t is a hidden state .

γt(i,m) =

[
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

][
Ci,mN (Ot|µi,m,Σi,m)∑M
m=1 Ci,mN (Ot|µi,m,Σi,m)

]
(2.4.5)

αt(i) = P (O1, O2, ..., Ot, qt = si|λ) (2.4.6)

βt(i) = P (OT−1, OT−2, ..., O1|qt = si, λ) (2.4.7)

2. Maximization: At this step the mixture weights, means, and covariances are

re-estimated. The re-estimated ratio between the expected number of times

the system is in state i using the m-th Gaussian mixture component and the

expected number of times the system is in state i is denoted by ĉi,m. The

re-estimation of the mean vector is denoted by µ̂i,m. The re-estimation of
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covariance matrix is denoted by σ̂i,m

Ĉi,m =

∑T
t=1 γt(i,m)∑T

t=1

∑M
m=1 γt(i,m)

(2.4.8)

µ̂i,m =

∑T
t=1 γt(i,m)Ot∑T
t=1 γt(i,m)

(2.4.9)

Σ̂i,m =

∑T
t=1 γt(i,m)(Ot − µ̂i,m)(Ot − µ̂i,m) ′∑T

t=1 γt(i,m)
(2.4.10)

The last step is to apply all the re-estimated values of µ̂i,m , σ̂i,m and Ĉi,m in

the equation 2.4.3 to find the value of the output PDF and fi(Oi).

2.4.1.2 The Viterbi algorithm and decoding HMM state sequence

This algorithm is used one issues of HMM, which is approximates the probability

p(O|λ), where O is a set of observations O = {o1, o2, ..., ot} for a given model λ by

finding the most likely state sequence Q = {q1, q2, ..., qt} that maximizes p(Q,O|λ).

Equation 2.4.11 finds the maximum probability over all partial state sequences end-

ing in state i at time t and the result is denoted by δt(i).

δt(i) = maxq1,q2,...,qt−1P (q1, q2, ..., qt; qt = si; o1, o2, ..., ot|λ) (2.4.11)

The following stages should be taken to find the best state sequence according to

Viterbi Algorithm [20].

1. Initialization: An initial value is chosen for δt(i) and ψ1(i) at t = 1 for state i.

δ1(i) = πibi(o1), 1 ≤ i ≤ N

ψ1(i) = 0
(2.4.12)
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2. Recursion: For the current state j at time t, an array ψt(j) keeps track of the

most likely previous state with highest probability.

δt(j) = max1 ≤ i ≤ N [δt1(i)aij]bj(ot), 1 ≤ j ≤ N, 2 ≤ t ≤ T

ψt(j) = argmax1 ≤ i ≤ N [δt1(i)aij], 1 ≤ j ≤ N, 2 ≤ t ≤ T
(2.4.13)

3. Termination: At the end of the observation sequence O = {o1, ..., oT} , the

best score p and the probability of state qT is computed as shown by Equation

2.4.14.
p = max1 ≤ i ≤ N [δT (i)]

q∗T = argmax1 ≤ i ≤ N [δT (i)]
(2.4.14)

4. Path backtracking: At the end of the observation sequence, after backtrack-

ing through the most likely predecessor states q t, the optimal HMM state

sequence, Q, is returned.

q t = ψt+1[q t+1], t = T1, T2, ..., 1

Thebeststatesequence : Q = q1, q2, ..., q
∗
T

(2.4.15)

2.4.2 Monophone and triphone

We should explain the two expression to understand the procedure better.

So if we use GMM based AM, the initial set of single Gaussian creates a monophone.

As we discussed the 5 state HMM, remembering that the first is start and the last

is end, which means they are being the silence model. Each state is represented by

single Gaussian having mean, variance and mixture weights. More training is done

to maximize the probability of the observation sequence. Figure 2.4.2 shows the

monophone expansion for the word Q�

�
J» in the Lebanese dialect which consist of four

phonemes each consists of three state HMM with each state being represented by

single Gaussian[47].
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Figure 2.4.2: Monophone expansion for /k/t/ee/r/ (Q�

�
J»)

We should know that the single Gaussian does not fit the distributions of feature

vectors. So better performance is obtained by having multiple mixture components

and retraining. According to Sajjan et al[47] having 8 mixture Gaussian component

will represent the feature vectors distribution better than single mixture Gaussian.

Since phones vary a lot, and having several phones for one phoneme, and we need

to capture all these variations in order to improve the AM performance so triphone

models is used.

Triphone HMMs are built by converting monophone transcriptions to triphone tran-

scriptions referred to as word internal and a set of triphone models. Figure 2.4.3

shows the triphone expansion of the word /k/t/ee/r/. In other words , each triphone

consists of 3 monophones, but the first and last triphone which has only 2 phonemes

from the word and spaceor Sil as appear in figure2.4.3 to separate between words.

Also we should know that we have Tied-state-Triphone which is one or more HMMs

share the same set of parameters. In this model building process, similar acoustic

states of triphones are tied in order to share data to ensure that all state distribu-

tions can be estimated[48, 49] . Data-driven and decision trees are the mechanisms

which cluster the states.

Figure 2.4.3: Triphone expansion for /k/t/ee/r/ (Q�

�
J»)
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2.4.3 Adaptation techniques used for AM

Adaptation techniques are used to solve the problem of having so many speakers in

different situation of recordings(noise/ clear/ outside), also to reduce the mismatch

between training and testing data, such as if AM is trained on native speaker dataset,

and un-native speaker used the system, this scenario shows high error rate. So the

adaptation techniques try to change the model parameter to work with the new

speaker parameters. This can be done by using small specific amount of adaptation

data for speaker or environment. There are many adaptation techniques used at

the AM such as, Maximum Likelihood Linear Regression (MLLR), Maximum A

Posterior (MAP), Speaker Adaptive Training (SAT) and Speaker Space methods.

Next we describe each technique briefly.

2.4.3.1 Maximum Likelihood Linear Regression (MLLR)

MLLR belongs to the Linear Regression (LR). When MLLR is firstly used, it was

only updated the mean value of Gaussian Mixture, but later it was also applied on

the variance as well[50]. The main reason of using MLLR is to reduce the difference

between the speaker independent mean vector and used model. This can be done

by obtaining transformation matrices for the model parameter to maximize the

likelihood of the adapted data. µi,m in equation2.4.16a means the m-th mean vector

for state i in Gaussian density function, Ac is a regression transformation matrix

and bc is a bias vector corresponding to some regression of class c. Also we can re-

write equation2.4.16a by changing the transformation matrix A into the extended

transformation matrix Wc as shown in equation2.4.16b, where ξi,m is the extended

mean vector.

µ̂i,m = Acµi,m + bc (2.4.16a)

µ̂i,m = Wcξi,m (2.4.16b)
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Wc = [bc, Ac] (2.4.16c)

ξi,m = [1, µTi,m]T (2.4.16d)

The adaptation data OR = {o1, o2, ..., oR} with D-dimensional feature vectors is

used for training Wc. And then use the new speaker adaptive mean instead of the

Gaussian PDFs in equation2.4.3[51, 50]

2.4.3.2 Maximum A Posterior (MAP)

It is another technique to adapt the new dialect with the model by modifying the

model parameter. This technique takes advantage of prior knowledge to add limi-

tation on the parameter deviation. This adaptation technique uses Bayesian rules.

When you have set of observation OR = {o1, o2, ..., oR}, and the MAP estimate

of HMM parameter λ, we can find p(O|λ). So in case we are given the posterior

distribution p(λ|O), and need to find the value of λ that maximize the posterior

distribution p(λ|O), we use the Bayesian rule as shown in equation 2.4.17.

ˆλ = argmaxλp(O|λ)p(λ) (2.4.17)

This approach as said depends on the prior knowledge. The question is what

happen in case of there is no prior data available to estimate the model parameter.

To solve this issue, the prior knowledge combined with the MAP adaptation. The

Expectation Maximization (EM) algorithm is used as maximum likelihood (ML) to

estimate λ. Equation 2.4.18 defines the MAP update formula for state i and mixture

component m and and observation sequence O = {o1, o@, ..., OR}, where µi,m is the

prior mean, τ is the balancing factor between ML mean estimate and the prior mean,

µ̄i,m is the mean of the adaptation data and Ni,m is the probability of occupying the
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mth Gaussian mixture component of state i at time t for R observations.

µ̂i,m =
Ni,m

τ +Ni,m

µ̄i,m +
τ

τ +Ni,m

µi,m (2.4.18a)

Ni,m =
R∑
r=1

Tr∑
t=1

γrt (i,m) (2.4.18b)

Goronzy et al[52] talked about new approach which combined MLLR and MAP.

They found that this combination reduced the error rate by 38% compared to the

speaker Independent (SI) system.

2.4.3.3 CMLLR

CMLLR is short for Constrained Maximum Likelihood Linear Regression. Its main

approach is to apply adaptation transform to observation data instead of model

parameters. They find that this method reduced the runtime compared with the

full variance transform. CMLLR estimate the mean and variance using the same

transform. Equations 2.4.19 and 2.4.20 show this transformation, where Ac is the

constrained transformation, Σik is the co-variance matrix and µik is the mean vector.

µ̂ik = Acµik + bc (2.4.19)

Σ̂ik = AcΣikA
T
c (2.4.20)

Digalakis et al[53] discussed the performance of CMMLR and MLLR, the perfor-

mance of both would be similar when the same form of transformation matrix is

used. Ferras et al[54] discussed how CMLLR and fMLLR can act the same, and this

can happen when single transformation is used the model-space transform.
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2.4.3.4 fMLLR

fMLLR is short for feature-space Maximum Likelihood Linear Regression. fMLLR

is used to discover a linear transform of an acoustic space to maximize the proba-

bility of test data given the speaker independent model. Also we should know that

fMLLR is applied directly to the acoustic feature vector without extra computation.

fMLLR can be calculated using the same equations of MLLR as shown in equation

2.4.16.

2.4.3.5 Speaker Adaptive Training (SAT)

If we have a training dataset with R speakers, initially MLLR is applied such that

the SI Gaussian mean vector µ is mapped to an estimate of SD model for each

speaker µ̂r in the training set as shown in equation 2.4.21, where Ar is a full matrix

and br is a bias vector that compromise the speaker specific transformation Wr

µ̂r = Arµ+ br (2.4.21)

From a set of observation sequence for each speaker where xr is the observation

sequence from speaker r, the optimum set of HMM parameters, λ̂ , and the set of

speaker transformations Ŵ = {Ŵ1, Ŵ2, ...., ŴR} are jointly estimated to maximize

the likelihood of the training data as shown in Equation2.4.22. Then the Gaus-

sian means, variance and mixture weights of these models are updated using EM

algorithm.

(λ̂, Ŵ ) = argmaxλ,W

R∏
r=1

p(xr ;Wr, λ) (2.4.22)
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2.4.4 Neural network background & HMM-DNN

In this section, we introduce DNN. Then we show how DNN got involved in the

AM which is known by HMM-DNN. And at the end, we show how DNN is used in

different parts of ASR.

2.4.4.1 Deep Neural Network (DNN)

Deep neural networks are set of algorithms, modeled to simulate the human brain

neural. It is designed to recognize patterns. It is used for clustering and classifying.

Classifying such as: detect voices, identify speakers, transcribe speech to text and

recognize sentiment in voices. Clustering such as: search and comparing documents.

The capacity of a neural network is decided by its architecture, which are: the

number of layers, number of nodes in each layer and the ability of information to

travel backward. These nodes are known as perceptron as shown in figure 2.4.4,

where xi = {x1, x2, ..., xn} are the input data, wi = {w1, w2, ..., wn} are the weights

which allow input to contribute lesser or greater amounts to the sum of input data,
∑

is used to indicate that there is addition operation, f(x) is the activation function

as shown in equation2.4.23, f(x) is also known as sigmoid function and y(x) is the

sum of weighed input data as shown in equation2.4.24[55, 56].

f(x) =
1

1 + e−x
(2.4.23)

y(x) = f

(
n∑
i=1

wixi

)
(2.4.24)
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Figure 2.4.4: Basic element of DNN "perceptron"

The structure of NN is mainly have two forms:

1. Single- Layer Perceptron (SLP): as shown in figure2.4.5a. SLP consists of

input layer that receives the input data, and an output layer that send the

output to the user. In SLP which has n inputs, the weights define a hyper-

plane with n-1 dimensional space, This only can classify the data into 2 groups

only. So SLP is limited with linearly separable data[56].

2. Multi-Layer Perceptron (MLP): as shown in figure 2.4.5b. MLP consists of

input layer, at least one hidden layer and output layer[56]. During the training

process, the input data is a forward direction one layer at a time, then the

output of this layer will be input to the next layer. The hidden layer main job

is to model non-linear patterns, and we should know that the complexity of

the system is increased by increasing the hidden layers.

2.4.4.2 HMM-DNN

The combination of HMM-DNN represent the powerful static classification and mod-

eling sequential patterns. Many years ago NN were introduced to estimate the HMM

state-posterior probabilities given the acoustic observations. But when NN is ap-

plied to model context-dependent states which uses large amount of training data
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(a) Neural network with single hidden layer

(b) Neural network with multiple hidden layer

Figure 2.4.5: Neural network structure
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to fine-tune a deep structure with multiple linear layer[57, 58, 59]. Figure 2.4.6

shows the structure of HMM-DNN based acoustic model, where HMM is applied

to model the speech dynamics, and DNN’s output estimate the posterior probabil-

ities of HMM’s tied-triphone. The Viterbi algorithm2.4.1.2 can be applied to train

HMM-DNN.

Figure 2.4.6: HMM-DNN structure [55]

2.4.4.3 DNN use in the ASR

After the great throughput of DNN at AM, researchers invest this improvements

and popularize the use of DNN technology in other parts of ASR such as, feature

extraction and LM. Bottleneck Features
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Bottleneck feature (BNF) is created using DNN technology. BNF is obtained

by training DNN-HMM based AM, in order to set the parameter of DNN, and

then used this trained DNN as feature extraction. This algorithm improves the

performance of speech recognition, enhance the extracted feature and reduce feature

dimension. This means that BNF are generated from multi-layer perceptron with

hidden layers, usually it consists of five layers and three of them are hidden. At

one layer of these hidden layers the number of perceptron is less than other hidden

layers, this layer gives the BNF as shown in figure2.4.7. These feature are used as

an input to GMM-HMM based AM[28]. Using MFCC combined with BNF enhance

the performance of ASR [60]

Figure 2.4.7: Bottleneck feature extraction[61]

DNN at the language model

Also After the great improvement at the feature extraction phase, DNN is used in

LM as well. How does DNN improve LM. This question well be answered after

discussing word embedding matrix. Word embedding matrix is the dictionary of all

words used in the given language, each word is mapped to a set of numbers in high-

dimensional space as vector representation. We should know that these numbers

changed over time. Word embeddings are used as input to Neural Networks NN

and with time, NN train itself by encoding rare characteristics such as semantics

and contextual information for each word. NN is not only predicting the next
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word regardless of the context, it has the ability to give itself feedback from prior

experiences. Therefore, it maintains the hidden states as they are changes over

different input data. The mentioned hidden states HS are analogous to short-term

memory. So HS remembers past experiences, so when it comes to the decision, past

experience and current input influence the current answer[62, 63].

Figure 2.4.8: How NN helps in LM and improves it[63]

2.5 Speech recognition and Bayesian rule

As described in section 2, the speech is converted into acoustics feature vector

O = {O1, O2, O3, ..., On}. The ASR will transform this vector into the most likely

sequence of words W; W = {W1,W2,W3, ...,Wm}. In other words ASR will try to

find the words given a sequence of feature vector p(W |O). And here Bayesian rule

is involved to change p(W |O) into easier form that we can calculate as shown in

equation 2.5.1.

P (W |O) = P (O|W ) ∗ P (W )/P (O) (2.5.1a)

P (O) =
∑
i

P (O|Wi) (2.5.1b)

P (O|W ) is calculated by Acoustic models (HMM-GMM or HMM-DNN), P (W )

is calculated by using LM.
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2.6 ASR toolkits

There are many tools used for ASR, such as[64]:

1. Kaldi: Kaldi[65] toolkit is one of powerful tools for speech recognition. It was

release on May 14, 2011. It is writen in C++ and had Apache license v2.0.

It is open source. According to[66] kaldi is the first recommended toolkit. It

is available for windows Operating system and Linux as well. Kaldi can be

downloaded from http://kaldi-asr.org/doc/install.html.

When it is downloaded, we should run make command in the terminal to make

sure that all the the commands works correctly. Most of the kaldi projects

exists in egs folder, which is one of sub-folders of Kaldi.

2. CMUSphinx: it is a group of speech recognition systems developed by Carengie

University. It is written in java code. CMUSphinx can be downloaded from

the following link http://cmusphinx.sourceforge.net/wiki/download. It is only

available for Linux operating system.

3. HTK: It is short for Hidden Markov Model Toolkit. It is written in C language.

HTK can be downloaded from the following link http://htk.eng.cam.ac.uk/download.shtml.

It is available for windows Operating system and Linux as well. It is a portable

toolkit for building and manipulating hidden Markov models. It is not totally

open source.

4. Julius: Is a two-pass large vocabulary continuous speech recognition (LVCSR)

engine. First created in 1997 by the Interactive Technology Consortium. The

only full model is available in Japanese language, and only a simple AM

for English language. It is written in C language. It can be downloaded

from the following link http : //julius.osdn.jp/enindex.php?q = index −

en.html#downloadjulius. It is available for windows Operating system and

Linux as well. It is an open source toolkit.
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5. Simon: Is a speech recognition toolkit with graphical user interface. It uses

CMUSphinx, HTK and Julius as the basis of the toolkit. It is available for

Linux Operating system and there is a running version for windows as well. Si-

mon can be downloaded from the following link https://simon.kde.org/download.

It is an open source toolkit.

6. iATROS speech recognizer. It is similar to Julius. It is written in C language.

It is only available for Linux operating system. It can be downloaded from the

following link https://www.prhlt.upv.es/page/projects/multimodal/idoc/iatros.

It uses HMM models.

7. RWTH ASR: It is not an open source toolkit. It is available for Linux plat-

form. RWTH ASR can be downloaded from the following link https://www-

i6.informatik.rwth-aachen.de/rwth-asr/. It is written in C++ language. It is

available for Linux and Mac operating system.

8. Jasper project: It has a graphical user interface as well as Simon. It is

an open source toolkit. It is written in Python Language. It is available

for Linux operating system. It can be downloaded from the following link

https://jasperproject.github.io/#about
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Chapter 3

Methodology and Implementation

In this chapter, we introduce the used toolkit 3.1, datasets 3.2 used in our experi-

ments, and how we prepare our data 3.3. We explain different scenarios 3.4 in order

to answer our thesis questions. Also we add more information about our experi-

ments 3.5 and to clarify our naming convention. At the end of this chapter, we list

the computer resources used in this experiment 3.6.

3.1 Kaldi toolkit

Kaldi is an open source software (free license), written in C++ and the user used

shell commands and scripts in command line prompt. Kaldi provides libraries to

support HMM,GMM and DNN systems. Kaldi has a recipe for Arabic ASR with a

good WER, which was developed by Ali et al[23], which is considered as baseline for

our work with some modifications to serve our need. Kaldi support GPU, which is

needed to run all HMM-DNN experiments. In order to run the GPU correctly, we

prepared kaldi to work with the GPU through Cuda development toolkit[67], which

is integrated with NVIDIA GTX980M graphic card.
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Figure 3.1.1: Kaldi hierarchy and main important folders

To know more about kaldi toolkit. Here is the main main important folders of

Kaldi, which you should have when you download it to your computer. As shown

in figure 3.1.1 kaldi has four main sub-folders, which are:

1. Tools: This folder contains all tools needed to run an exact recipe, such as

SRILM to create Language Model from training dataset. OPENFST for finite

state transducers (FSTs) which is used to construct, combine, optimize, and

search weighted FSTs. ATLAS which is a big library for matrix calculations.

And other tools.

2. src: This folder contains the source code of all libraries that support HMM,

GMM and DNN systems.

3. Data: The storage of all dataset used to build ASR.

4. egs: This folder contains all the examples created using kaldi and can be reused

for similar problems. In this sub-folder we have our recipe of TestASR. Inside

TestASR we should have

• s5: This sub-folder contains all the executable files for this recipe.

• conf: short for configurations. This sub-folder contains all the required

configurations of MFCC, Fbank, DNN decoding and more.



46

• steps: This sub-folder is a soft link, refers to Wall Street Journal WSJ

recipe, which contains the main steps of creating ASR.

• utils: This sub-folder is a soft link, refers to WSJ recipe, which contains

all the computational scripts like make graphs.

• local: This sub-folder contains the executable scripts for the TestASR

(in our case).

3.2 Dataset

In this research, we use The following datasets:

1. Gale phase 2 Arabic broadcast news speech part 2 (LDC2015S01)[68]: This

part of dataset contains approximately 170 hours of Arabic broadcast news

speech. LDC, MediaNet, Tunis, Tunisia and MTC, Rabat, Morocco collected

this data in 2006 and 2007. The sample rate for LDC2015S01 is 16000 and

it’s sample type is PCM.

2. Arabic dialectal dataset (Egyptian): VarDial 2018 program[69] collected and

transcribed this dataset on March 12, 2018. Egyptian training dataset is about

12 hours and 23 minutes, almost 3177 utterances. The Egyptian testing data

set is about 2 hours, almost 315 utterances. The sample rate for this dataset

is 16000 and its sample encoding is 16-bit Signed Integer PCM.

3. Arabic dialectal dataset (Gulf): VarDial 2018 program[69] collected and tran-

scribed this dataset on March 12, 2018. Gulf training dataset is about 10 hours

and 9 minutes, almost 2873 utterances. The Gulf testing data set is about 2

hours, almost 265 utterances. The sample rate for this dataset is 16000 and

its sample encoding is 16-bit Signed Integer PCM.
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4. Arabic dialectal dataset (Levantine): VarDial 2018 program[69] collected and

transcribed this dataset on March 12, 2018. Levantine training dataset is

about 10 hours and 16 minutes. The Levantine testing data set is about 2

hours. The sample rate for this dataset is 16000 and its sample encoding is

16-bit Signed Integer PCM.

5. Arabic dialectal dataset (North African Arabic): VarDial 2018 program[69]

collected and transcribed this dataset on March 12, 2018. North African Ara-

bic training dataset is about 10 hours and 28 minutes. The North African

Arabic testing data set is about 2 hours. The sample rate for this dataset is

16000 and its sample encoding is 16-bit Signed Integer PCM.

6. Arabic dialectal dataset (Modern spoken Arabic MSA): VarDial 2018 pro-

gram[69] collected and transcribed this dataset on March 12, 2018. MSA

training dataset is about 12 hours and 24 minutes. The sample rate for this

dataset is 16000 and its sample encoding is 16-bit Signed Integer PCM.

7. Language Model: We built 3-gram language model using Stanford Research

Institute Language Model (SRILM)[70].

8. Lexicon: we used the lexicon provided by Qatar Computing Research Institute

(QCRI)[31].

3.3 Data preparation

Maybe data preparation is one of the hardest stage at all. Our data consists of

AUDIO and TEXT files. All the voices in the audio is transcribed, so we can

get multiple phones for each phoneme. My job is to uniform all the datasets men-

tioned earlier3.2. The audio files is converted to wav format with 16000 sample rate.
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About text preparations, the used dataset is created to serve different job. So

all the dialects are mixed. Therefore, I split each dialect into an independent file

using java. In addition, at this step we split the given data into training and testing

dataset. This means that we have two raw files for each dialect. Then, we use

those files to create the main files of running Kaldi toolkit. The main files are text,

utt2spk, spk2utt and wav.scp. We create those files for each training dataset and

testing dataset. Java code is used to create those files.

3.4 Methodology

In this section, we list the main scenarios to run the experiments of this research.

3.4.1 Measure how close each dialect to MSA and apply sev-

eral adaptation techniques

We create an ASR model trained on MSA dataset, and in our case it is Gale dataset,

then we use this model to test different dialectal speech one at a time. The tested

dialects are Egyptian, Lavantine, Gulf and North African dialects. For each dialect,

We apply number of feature exaction, adaptation techniques and optimization tech-

niques to improve the performance and reduce error rate. We consider the results

of this model to be our reference point, in order to measure the changes done to

improve the accuracy. We name the experiment results after the tested dialect.

For example, we call the experiment results Egypt when we tested Egyptian dialect.

Therefore, by the end of this scenario we have four different results, which are Egypt,

Gluf, NOR and LAV. We have the state-of-art GMM-HMM ASR, DNN-HMM ASR

and run each dialect on both system. We add Delta, Delta-Delta, LDA and MLLT

to MFCC. Then we apply several adaptation and optimization techniques to study

its effect on the performance of our ASR model. All results are shown in chapter 4.
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3.4.2 Compare fMLLR, MAP and the combination of both

Some studies show a great improvement of using MAP adaptation on the perfor-

mance of ASR. And some studies recommend using the combination of MAP and

fMLLR. So We decide to study the effect of fMLLR and MAP while using Arabic

dataset. We apply fMLLr adaptation on top of LDA, MLLT and SAT, and we apply

MAP adaptation using the same settings of fMLLR. Then we combine both fMLLR

and MAP to check whether this action improves the performance of ASR or not.

MAP and fMLLR are applied to HMM-GMM AM. And we apply these adaptation

techniques on all dialects in this research. All results are shown in chapter 4.

3.4.3 Independent model for all dialects

In this scenario, We train our ASR on all dialects (Egypt, NOR, LAV and Gulf)

and MSA. And as mentioned earlier 3.5, we call this experiment ALL_tt. As other

experiments, we apply all adaptation and optimization techniques, but this time We

have a pool of different dialects; which means that we mix the testing files of all

dialects in this research, to be tested at the same time on this dialect free ASR.

In order to add more improvements, we add bottleneck feature BNF to this model.

Then we compare the results of this model with the best results we got from the

earlier models, all results are shown in chapter 4.

3.5 Experiment descriptions

Here we introduce our experiments and declare naming convention as shown in ta-

ble3.1. In this table we see terms that need explanation as well, which are explained

in 3.5.1.
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We plan Our experiments to answer our main questions. So we start by measuring

how close each Arabic dialect to MSA as shown in our first scenario 3.4.1. Also we

compare the performance of HMM-GMM and HMM-DNN. In addition, we compare

the performance of ASR while using MAP and fMLLR adaptation techniques, and

combination of both as shown in 3.4.2. Then we build Independent Dialect ASR

(ID-ASR) as shown in 3.4.3.

We start by selecting the training dataset for each experiment run, table 3.2 shows

the utterance number for training and testing for each experiment. Therefore, we

train the ASR on one dialect of Egypt, LAV, Gulf and NOR at a time. We have

four different training datasets for each tested dialect, If we denote for the dialect

by X, we can see X, X1, X2 and X3 in our results. Here is the explanation for each

one:

1. X : This model is trained on MSA only and tested X dialect. The size of the

training data is 50K utterances.

2. X1: This model is trained on X only and tested X. Our dataset for X is very

small (2K to 3K utterances).

3. X2: This model is trained on X + MSA, the size of the training data is between

4K to 5K utterances.

4. X3:This model is trained on X and MSA, the size of the training data is 40K

utterances, mostly MSA because of the shortage of dialectal dataset.

Also we train ASR on all dialects and MSA, and we denote this experiment by

ALL. ALL_tt means that this ASR is trained on all dialects and had pool testing

for all dialects. But ALL_X where X is a dialect, means that this ASR is trained on

ALL dialects but had X dialect for testing. We add this step to explain the results

and have better look at the each dialect. So we can compare different models that
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testing the same dataset.

Table 3.1: The explanation of experiments names

Name Used techniques Additional information

combined —– combine fmllr and MAP

tri1 MFCC+ Delta • Number of leaves of HMM is 2500.

• Total Gaussian number is 30000.

• Used the alignment of mono-phone

training

• tri is short for tri-phone training.

tri2a MfCC+Delta • Number of leaves of HMM is 3000.

+Delta - Delta • Total Gaussian number is 40000.

• Used the alignment of tri1 training.

tri2b LDA +MLLT • Number of leaves of HMM is 4000.

• Total Gaussian number is 50000.

• Used the alignment of tri1 training.

tri2b_mmi LDA+ MLLT • make dentals from tri2b

• Used the alignment of tri2b training.

• The default value of boost is 0.0 .

• Decoding iteration 3 and 4

tri2b_mmi_b0.1 LDA+ MLLT • used the alignment of tri2b training.

• The Boost value is 0.1 .

• Decoding iteration 3 and 4

tri2b_mpe LDA+ MLLT • used the alignment of tri2b training.

• Decoding iteration 3 and 4

tri3b LDA +MLLT • Number of leaves 5000.

+ SAT • Total Gaussian number is 100000.
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• Used the alignment of tri2b training.

tri3b_dnn_2048x5 build on tri3b • DNN with 5 hidden layers

• The number of hidden dimension is

2048

• Used MFCC as feature extraction

• Learning rate is 0.008

tri3b_dnn_2048x5 build on tri3b • Used Fbank as feature extraction

_fbank

tri3b_dnn_2048x5 build on tri3b • Used MFCC as feature extraction

_smb • Apply MPE optimization on DNN

model.

tri3b_dnn_2048x5 build on tri3b • Used Fbank as feature extraction

_smb_fbank • Apply MPE optimization on DNN

model.

tri4b LDA +MLLT+

SAT

used the alignment of tri2b training.

In addition, we need to know that many researchers worked on Arabic Language.

Ali et al[23] used kaldi toolkit, and run many experiments to tune DNN. Therefore,

they decide the optimal number of hidden layers and hidden dimensions by practice,

which is set to five hidden layers and 2048 hidden dimensions. Therefore, we set the

values of these parameters as other researchers did.



53

3.5.1 Important information we have to know about the ex-

periments

Here we explain techniques used in running the experiments within this research, to

check how it improves the performance of ASR. We have techniques to improve the

feature vector, different adaptation techniques and different optimization techniques.

1. MFCC: Feature extraction method which is explained in section 2.1.1

2. Fbank: Feature extraction method which is explained in section 2.1.2

3. Delta ∆: Delta is the difference between two consecutive raw features. In

order to capture time evolution of the spectral content of the signal, we have

to add dynamic feature to MFCC feature vector. Delta is calculated from each

frame static information. This is used to increase the degree of the feature

vector.

4. Delta-Delta: Which is acceleration coefficients that are calculated from Delta.

And Delta-Delta is used to increase the degree of the feature vector as well.

5. LDA: Stands for Linear Discriminat Analysis, is a known method used to

estimate linear subspace with discriminating properties in order to analyze

multiple classes, LDA focus on dimensions that separates classes and orders

dimensions according to class separabilty. In other words, LDA is uses to

reduce dimensionalty of input features so that samples belonging to the same

class are close together but samples from different classes are far apart from

each other[71, 72, 73].

6. MLLT: stands for Model-space transforms build on LDA. MLLT takes the

output reduced feature space from LDA and derives unique transformation

for each speaker which is considered as a step for speaker normalization to

minimize the differences among speakers. MLLT Estimates the parameters of
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a linear transform in order to maximize the likelihood of the training data given

a diagonal-covariance Gaussian mixture models; the transformed features are

better represented by the model than the original features[74, 75].

7. MAP (Maximum A Posterior). Explained in section 2.4.3.2.

8. SAT (Speaker Adaptive Training). Explained in section 2.4.3.5.

9. fMLLR (feature-space Maximum Likelihood Linear Regression). Explained in

2.4.3.4.

10. MMI: Stands for Maximum Mutual Information. The mutual information

between the acoustic data and its dialect class (in our case). MMI Gives

a high discriminating ability to the system. AS discriminative models learn

the parameters of a joint probability model so that classification errors are

minimised. MMI is used to maximize the conditional certainty of a class of

utterances given an observation sequence. MMI is an optimization technique

works on sentence level[76].

11. MPE: Stands for Minimum Phone Error. MPE gives a high discriminating

ability to the system as MMI, but MPE works on phone level. MPE is an

objective function designed for continuous speech recognition[77].



55

Table 3.2: More details about running experiments; #utterances for training and
testing for each experiment

exp name #Train utterances #Test utterances

Egypt 49462 3177

Egypt1 3177 297

Egypt2 5665 297

Egypt3 40008 297

LAV 49462 2939

LAV1 2939 327

LAV2 5427 327

LAV3 39889 327

Gulf 49462 2707

Gulf1 2707 259

Gulf2 5195 259

Gulf3 39773 259

NOR 49462 2866

NOR1 2866 346

NOR2 5354 346

NOR3 39853 346

ALL_tt 44264 1229

ALL_Egypt 44264 297

ALL_Gulf 44264 259

ALL_LAV 44264 327

ALL_NOR 44264 346
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3.5.2 Word Error Rate - WER

WER is a common metric to measure the performance of the speech recognition

system. Equation 3.5.1 shows how WER is calculated, where S is the number of

the substitutions, D is the number of deletion, I is the number of insertions, C is

the number of corrects and N is the total number of words in the reference where

N = S +D + C

WER =
S +D + I

N
(3.5.1)

WER =
S +D + I

S +D + C
(3.5.2)

Once we know the error rate, we can calculate the accuracy as shown in equation

3.5.3, where WAcc is the word accuracy.

WAcc = 1−WER (3.5.3)

3.6 Computer resources

The computer resources available for this research are:

1. MSI GT72S 6QE Dominator Pro G: NVIDIA GTX980M G-SYNC 1536 cores,

intel core i7; 4 cores 8 threads (8x3600 MHz), 32 GB Ram, 700 GB storage.

We name this computer MSI to use later in our discussion.

2. Dell OptiPlex 3010 I5, GPU 1650 cores, 8 GB Ram, 500 GB Storage. We

name this computer DELL to use later in our discussion.
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Chapter 4

Experiments and Results

In this chapter, we list all our results using different adaptations and different dataset

sizes for all dialects, all adaptations and details are mentioned in table 3.1. The

results are divided into two parts; Time consuming depending on the computer

resources and WER.

4.1 Time consuming depending on the computer re-

sources

In this section, we list more details about the experiments. The details of used

computer, start time, end time and consumed timed for each experiment are listed

in table4.1. Each dialect have four main experiments by controlling the training

data, review 3.4 for details.

The main experiments Egypt, LAV, NOR and Gulf, shown in table4.1 are all run

on DELL computer. The ASR is trained on MSA only using Gale phase 2. Egypt

experiment is the first experiment to run; start by training the ASR and then decode

the Egyptian dialect. This explain why the consumed time for this experiment is
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more than LAV, NOR and Gulf. After we get the trained ASR on MSA, we use

the same model to decode LAV, NOR and Gulf. The rest of our main experiments

mentioned in table4.1 run on MSI computer.

We want to take closer look to Egypt, Egypt3 and ALL_tt, 50K, 40K and 45K

are the training size of each of them respectively. The consumed time for these

experiments in table4.1 is the time for both training the ASR and testing. The con-

sumed time for Egypt is 31.66 days compared with the consumed time for Egypt3

and ALL_tt which are 15.69 and 15.32 days respectively. Consumed time using

DELL is almost twice the time used to run the same experiment conditions on MSI.

Another example showing the used time on different computers. Experiments run

only for decoding, on DELL we have { LAV, Gulf and NOR} and on MSI we have {

ALL_Egypt, ALL_Gulf and ALL_LAV}. The consumed time for the three experi-

ments ran on DELL is 38.88 days. And the consumed time for the three experiments

ran on MSI is 9.97 days. Here we can tell that the computer qualification affect the

computation time.
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Table 4.1: More details about running experiments; computer name, start and end
time for each experiment

exp name Computer Start time End Time Time Time

name (minutes) (days)

Egypt DELL 11 May 7:30am 11 Jun 11:12pm 45,582 31.66

Egypt1 MSI 21 May 9:00am 30 May 10:30pm 13770 9.57

Egypt2 MSI 25 May 5:00am 31 May 10:30pm 9690 6.73

Egypt3 MSI 26 May 7:00am 10 Jun 11:30pm 22590 15.69

LAV DELL 12 Jun 5:00am 24 Jun 11:12pm 18372 12.77

LAV1 MSI 01 Jun 2:00am 10 Jun 11:45pm 14265 9.91

LAV2 MSI 01 Jun 12:15am 10 Jun 11:45pm 14363 9.98

LAV3 MSI 01 Jun 7:30am 17 Jun 9:22pm 23872 16.58

Gulf DELL 26 Jun 9:39am 08 July 10:48am 17349 12.05

Gulf1 MSI 19 Jun 8:00am 24 Jun 2:15pm 7575 5.26

Gulf2 MSI 19 Jun 6:00am 24 Jun 12:15pm 7575 5.26

Gulf3 MSI 21 Jun 1:00am 30 Jun 10:44am 13544 9.41

NOR DELL 09 Jul 7:44am 23 Jul 9:15am 20251 14.06

NOR1 MSI 30 Jun 3:30pm 07 Jul 11:45pm 10575 7.35

NOR2 MSI 30 Jun 4:00pm 08 Jul 1:00am 10620 7.375

NOR3 MSI 01 Jul 11:00am 12 Jul 1:25pm 15985 11.1

ALL_tt MSI 17 Jul 7:30am 01 Aug 3:00pm 22050 15.32

ALL_TT_Add Bottleneck 11 Sep 11:34pm 19 Sep 8:42pm 11348 7.88

ALL_Egypt MSI 04 Aug 9:33pm 08 Aug 3:15pm 5382 3.74

ALL_Gulf MSI 01 Aug 8:40pm 04 Aug 4:55am 3345 2.33

ALL_LAV MSI 04 Aug 9:51pm 08 Aug 7:30pm 5619 3.9

ALL_NOR MSI 09 Aug 1:49am 11 Aug 10:16am 3387 2.35

Total Time 317109 220.215

Notes: The following experiments ran only for testing datasets, using exist ASR model.

LAV, Gulf, NOR, ALL_Egypt, ALL_Gulf, ALL_LAV and ALL_NOR
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4.2 WER for different dialects

In this section, we discuss Word Error Rate for all Arabic dialects that is part of

our research.

4.2.1 Egyptian Arabic dialect

We List below the results we get while experimenting Egyptian dialect. We get the

best results using HMM-DNN with five hidden layers and 2048 hidden dimensions,

then apply MPE optimization. The best results for the different datasets are for the

same configurations. From the table 4.2, we can see that when we train the ASR on

Gale phase 2 Arabic only and test Egyptian dialect, the WER is 82.62%. However,

when we add the Egyptian dialect to the training set, the results get better; the

best WER is reduced by 19.62% which become 62.99% compared with the model

trained on MSA only.

Why we add the MSA through all the steps of experimenting the dialect? That

is because the available dialectal speech of Egyptian dialect is 12.5 hours. But if we

get more dialectal speech, the results will enhance more.
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Table 4.2: WER of Egyptian dialect with different dataset sizes, different adaptation
and optimization

Run type EYGPT EYGPT1 EYGPT2 EYGPT3

combined 80.12 86.01 72.45 75.46

tri1 85.6 89.13 78.7 79.83

tri2a 85.7 88.54 77.38 78.85

tri2b 81.14 86.65 74.49 74.5

tri2b_mmi 76.93 89.41 73.42 72.12

tri2b_mmi_b0.1 76.11 88.82 72.73 71.95

tri2b_mpe 77.83 85.97 72.26 71.98

tri3b 79.43 85 72.32 75.42

tri3b_dnn_2048x5 74.09 85.53 70.32 71.29

tri3b_dnn_2048x5_fbank 100.08 90.95 75.39 69.08

tri3b_dnn_2048x5_smb 70.73 82.62 66.24 62.99

tri3b_dnn_2048x5_smb_fbank 100 89.24 73.09 64.85

tri4b 81.17 86.62 74.52 74.59
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Figure 4.2.1: WER of Egyptian dialect with different dataset sizes, different adap-
tation and optimization

From the previous table4.2, we want to compare the results of HMM-GMM vs

HMM-DNN, the experiment tri2b_mpe which is HMM-GMM with MPE optimiza-

tion and tri3b_dnn_ 2048x5_smb which is HMM-DNN with MPE optimization.

Figure4.2.2 shows that HMM-DNN has better WER than HMM-GMM. Our best

results was for EYGPT3 experiment overall our experiments. And HMM-DNN re-

duced the WER by 8.99% compared with HMM-GMM. We need to mention that

the numbers appear on HMM-DNN column in this graph is an absolute difference

between HMM-GMM and HMM-DNN results.
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Figure 4.2.2: WER of comparing HMM-GMM and HMM-DNN with MPE opti-
mization for Egyptian dialect

In addition, we need to discuss the difference between training ASR using MSA

only and involve the dialect in the training. Figure4.2.3 shows that involving the

dialect in training enhance the performance of ASR. The numbers on X-axis are the

Run type as shown in table4.2 in the same order. On the other hand we can see

that the size of training data of Egypt is greater than Egypt3, this confirms that

selected data is much important than the size of the training data.
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Figure 4.2.3: Compare MSA trained ASR (Egypt) verses dependent dialect ASR
(Egypt3)

According to [29] there is a great enhancement of combining adaptation tech-

niques, which are fMLLR and MAP. So we test fMLLR, MAP and combine them

to check if this enhance the performance of our ASR. Figure4.2.4 shows the results

of testing fMLLR, MAP and combining them. The results show that there is no

difference between using either adaptation on its own and there is no enhancement

of combining them as well.
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Figure 4.2.4: WER of comparing fmllr, Map and combination of both for Egyptian
dialect

4.2.2 Gulf Arabic dialect

We List below the results we get while experimenting Gulf dialect. We get the best

results using HMM-DNN with five hidden layers and 2048 hidden dimensions, then

apply MPE optimization. The best results for the different datasets are for the same

configurations. From the table 4.3, we can see that when we train the ASR on Gale

phase 2 Arabic only and test Gulf dialect, the WER was 71.01%. But when we add

the Gulf dialect to the training set, the results get better, the best WER is reduced

by 16.89% which become 54.12% compared with the model trained on MSA only.
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Table 4.3: WER of Gulf dialect with different dataset sizes, different adaptation
and optimization

Run type Gulf Gulf1 Gulf2 Gulf3

combined 81.12 92.52 68.72 69.53

tri1 87.04 95.74 76.57 75.63

tri2a 86.39 95.27 75.66 74.98

tri2b 81.05 93.96 72.81 69.19

tri2b_mmi 75.61 96.82 71.68 65.75

tri2b_mmi_b0.1 74.52 96.63 70.9 65.74

tri2b_mpe 77.22 94.66 70.95 65.63

tri3b 80.42 92.59 68.58 69.38

tri3b_dnn_2048x5 74.91 91.7 66.2 61.3

tri3b_dnn_2048x5_fbank 99.96 97.62 76.64 62.03

tri3b_dnn_2048x5_smb 71.01 91.06 62.73 54.12

tri3b_dnn_2048x5_smb_fbank 99.95 97.05 71.78 57.69

tri4b 81.07 93.98 72.73 69.09
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Figure 4.2.5: WER of Gulf dialect with different dataset sizes, different adaptation
and optimization

From the previous table4.3, we want to compare the results of HMM-GMM vs

HMM-DNN, the experiment tri2b_mpe which is HMM-GMM with MPE optimiza-

tion and tri3b_dnn_ 2048x5_smb which is HMM-DNN with MPE optimization.

Figure4.2.6 shows that HMM-DNN has better WER than HMM-GMM. Our best

results was for Gulf3 experiment overall our experiments. And HMM-DNN reduced

the WER by 11.51% compared with HMM-GMM. We need to mention that the

numbers appear on HMM-DNN column in this graph is an absolute difference be-

tween HMM-GMM and HMM-DNN results.
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Figure 4.2.6: WER of comparing HMM-GMM and HMM-DNN with MPE opti-
mization for Gulf dialect

In addition, we need to discuss the difference between training ASR using MSA

only and involve the dialect in the training. Figure4.2.7 shows that involving the

dialect in training enhance the performance of ASR. The numbers on X-axis are the

Run type as shown in table4.3 in the same order. Also we can see that the size of

training data of Gulf is greater than Gulf3, this confirms that selected data is much

important than the size of the training data.
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Figure 4.2.7: Compare MSA trained ASR (Gulf) verses dependent dialect ASR
(Gulf3)

We test different adaptation techniques when we experiment Gulf dialect. We

test fMLLR, MAP and combine both of them to check if these adaptation techniques

affect the performance of our ASR. Figure4.2.8 shows that both adaptation has

the same affect on our ASR and combining fMLLR and MAP do not enhance the

performance as well.
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Figure 4.2.8: WER of comparing fmllr, Map and combination of both for Gulf
dialect

4.2.3 Laventine Arabic dialect

We List below the results we get while experimenting Laventine dialect. Laventine

dialect is complicated and if you try to listen to 15 min speech, you can check the

situation here. In our early start of working with Laventine dialect, we change so

many parameters trying to reduce WER. We have used different values for Acoustic

Scale; used for lattice generation, we used 0.1 , 0.08 and 1.0. We get the best results

using 0.1 for Acoustic Scale. In addition, we change the lattice_beam which is by

default is 6, we have tested 8 and 10. We use these numbers because of the warning

messages we get in the log files. The values of the discussed parameters are the

same values for the other tested dialects in this research.

For our different datasets, we get different configuration for the best WER. For

LAV, we get the best results while using MMI with 0.1 boost. For LAV1 and LAV2,

we get the best results while using HMM-DNN with five hidden layers, 2048 hidden
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dimensions, MPE optimization and MFCC as feature extraction. And for LAV3,

we get the best results while using HMM-DNN with five hidden layers, 2048 hidden

dimensions and MPE optimization but using fbank as feature extraction. From the

table 4.4, we can see that when we train the ASR on Gale phase 2 Arabic only and

test Laventine dialect, the WER was 90.6%. But when we add the Laventine dialect

to the training set, the results get better, the best WER is reduced by 21.48% which

become 69.12% compared with the model trained on MSA only.

Table 4.4: WER of Laventine dialect with different dataset sizes, different adaptation
and optimization

Run type LAV LAV1 LAV2 LAV3

combined 105.42 94.7 81.53 83.61

tri1 97.49 95.43 85.74 83.61

tri2a 97.26 94.58 85.29 82.95

tri2b 99.15 94.12 83.26 78.82

tri2b_mmi 91.91 99.7 82.79 76.63

tri2b_mmi_b0.1 90.6 99.67 82.03 76.72

tri2b_mpe 95.08 98.22 80.36 76.96

tri3b 100.29 94.08 81.24 81.12

tri3b_dnn_2048x5 101.18 95.18 82.67 79.07

tri3b_dnn_2048x5_fbank 99.93 98.27 90.04 74.17

tri3b_dnn_2048x5_smb 97.26 93 76.1 70.71

tri3b_dnn_2048x5_smb_fbank 99.94 97.61 82.84 69.12

tri4b 99.27 94.13 83.28 78.79



72

Figure 4.2.9: WER of Laventine dialect with different dataset sizes, different adap-
tation and optimization

From the previous table4.4, we want to compare the results of HMM-GMM vs

HMM-DNN, the experiment tri2b_mpe which is HMM-GMM with MPE optimiza-

tion and tri3b_dnn_ 2048x5_smb which is HMM-DNN with MPE optimization.

Figure4.2.2 shows that HMM-DNN has better WER than HMM-GMM. Our best

results was for LAV3 experiment overall our experiments. And HMM-DNN reduced

the WER by 6.25% compared with HMM-GMM. About LAV which is MSA only

trained ASR, the HMM-DNN do not act as expected because of the complication

of the dialect itself, but when we add the Laventine dialect to the training dataset,

the performance of the ASR has enhanced. We need to mention that the num-

bers appear on HMM-DNN column in this graph is an absolute difference between

HMM-GMM and HMM-DNN results.
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Figure 4.2.10: WER of comparing HMM-GMM and HMM-DNN with MPE opti-
mization for Laventine dialect

Also we need to discuss the difference between training ASR using MSA only and

involve the dialect in the training. Figure4.2.11 shows that involving the dialect in

training enhances the performance of ASR. The numbers on X-axis are the Run type

as shown in table4.4 in the same order. Also we can see that the size of training data

of LAV is greater than LAV3, this confirms that selected data is much important

than the size of the training data.
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Figure 4.2.11: Compare MSA trained ASR (LAV) verses dependent dialect ASR
(LAV3)

We also test different adaptation techniques when we are experimenting Laven-

tine dialect. We have applied fMLLR, MAP and combine both of them to check if

these adaptation techniques affect the performance of our ASR. Figure4.2.12 shows

that both adaptation has the same affect on our ASR and combining fMLLR and

MAP do not enhance the performance as well.
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Figure 4.2.12: WER of comparing fmllr, Map and combination of both for Laventine
dialect

4.2.4 North Africa Arabic dialect

We List below the results we get while experimenting North Africa NOR dialect.

NOR dialect is complicated as well as Laventine dialect. For our different datasets,

we get different configuration for the best WER. For NOR, we get the best results

while using MMI with 0.1 boost. For NOR1, we get the best results while using MAP

adaptation. For NOR2 and NOR3, we get the best results while using HMM-DNN

with five hidden layers, 2048 hidden dimensions, MPE optimization and MFCC as

feature extraction. From the table 4.5, we can see that when we train the ASR on

Gale phase 2 Arabic only and test NOR dialect, the WER is 95.95%. But when

we add the NOR dialect to the training set, the results get better, the best WER

is reduced by 29.37% which become 66.58% compared with the model trained on

MSA only.
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Table 4.5: WER of North Africa dialect with different dataset sizes, different adap-
tation and optimization

Run type NOR NOR1 NOR2 NOR3

combined 129.51 88.4 81.4 83.54

tri1 97.78 91.86 84 86.39

tri2a 97.55 89.9 82.79 86.02

tri2b 110.84 87.86 81.4 82.39

tri2b_mmi 98.14 99.27 81.12 76.81

tri2b_mmi_b0.1 95.95 99.66 80.88 77.38

tri2b_mpe 104.4 96.67 78.59 78.69

tri3b 113.49 88.2 80.53 82.81

tri3b_dnn_2048x5 122.61 91.41 81.46 82.29

tri3b_dnn_2048x5_fbank 99.97 97.75 90.37 73.51

tri3b_dnn_2048x5_smb 112.71 88.17 73.76 66.58

tri3b_dnn_2048x5_smb_fbank 99.95 95.54 80.67 67.11

tri4b 111.06 87.83 81.45 82.21
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Figure 4.2.13: WER of North Africa dialect with different dataset sizes, different
adaptation and optimization

From the previous table4.5, we want to compare the results of HMM-GMM vs

HMM-DNN, the experiment tri2b_mpe which is HMM-GMM with MPE optimiza-

tion and tri3b_dnn_ 2048x5_smb which is HMM-DNN with MPE optimization.

Figure4.2.14 shows that HMM-DNN has better WER than HMM-GMM. Our best

results is for NOR3 experiment overall our experiments. And HMM-DNN reduce

the WER by 12.11% compared with HMM-GMM. About NOR which is MSA only

trained ASR, the HMM-DNN do not act as expected because of the complication of

the dialect itself, but when we add the North African dialect to the training dataset,

the performance of the ASR has enhanced. We need to mention that the numbers

appear on HMM-DNN column in this graph is an absolute difference between HMM-

GMM and HMM-DNN results.
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Figure 4.2.14: WER of comparing HMM-GMM and HMM-DNN with MPE opti-
mization for North African dialect

In addition, we need to discuss the difference between training ASR using MSA

only and involve the dialect in the training. Figure4.2.15 shows that involving the

dialect in training enhance the performance of ASR. The numbers on X-axis are

the Run type as shown in table4.5 in the same order. Also we can see that the size

of training data of NOR is greater than NOR3, this confirms that selected data is

much important than the size of the training data.



79

Figure 4.2.15: Compare MSA trained ASR (NOR) verses dependent dialect ASR
(NOR3)

We also test different adaptation techniques when we experiment North African

dialect. We apply fMLLR, MAP and combine both of them to check if these adap-

tation techniques affect the performance of our ASR. Figure4.2.16 shows that both

adaptation has the same affect on our ASR and combining fMLLR and MAP do

not enhance the performance of our ASR as well.
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Figure 4.2.16: WER of comparing fmllr, Map and combination of both for North
Africa dialect

4.2.5 All dialect trained ASR

Our main idea is to create a special model for each dialect, and to create a front-end

system to detect the dialect, and then to run an appropriate dialect model for a

given speech. But according to our results, and small datasets for each dialect, we

decide to build an Independent Dialect ASR (ID-ASR); which means that we want

to create an ASR to be suitable for all dialects, in order to have only one ASR for

all available dialects without adding a dialect detection at the front-end. This can

be done by training the ASR on all available dialects then testing this ASR on all

dialects. Table 4.6 shows the results of training our ASR on all dialects and the

best results of dependent dialect ASR (DD-ASR); NOR3, LAV3, Gulf3 and Egypt3.

We combine the results in one table to ease our comparison between DD-ASR and

ID-ASR. We apply the same adaptation and optimization techniques on each model.

By comparing the results we can see that ID-ASR has better results than DD-ASR.
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We get the best results while we use HMM-DNN with five hidden layers, 2048 hid-

den dimensions, MPE optimization and MFCC as feature extraction.

Table 4.6: WER of ID-ASR and DD-ASR with different adaptation and optimization

Run type ALL NOR3 LAV3 Gulf3 Egypt3

combined 74.47 83.54 83.61 69.53 75.46

tri1 78.31 86.39 83.61 75.63 79.83

tri2a 77.59 86.02 82.95 74.98 78.85

tri2b 72.86 82.39 78.82 69.19 74.5

tri2b_mmi 71.54 76.81 76.63 65.75 72.12

tri2b_mmi_b0.1 72.11 77.38 76.72 65.74 71.95

tri2b_mpe 70.56 78.69 76.96 65.63 71.98

tri3b 74.61 82.81 81.12 69.38 75.42

tri3b_dnn_2048x5 68.62 82.29 79.07 61.3 71.29

tri3b_dnn_2048x5_fbank 69.01 73.51 74.17 62.03 69.08

tri3b_dnn_2048x5_smb 59.21 66.58 70.71 54.12 62.99

tri3b_dnn_2048x5_smb_fbank 64.04 67.11 69.12 57.69 64.85

tri4b 72.83 82.21 78.79 69.09 74.59
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Figure 4.2.17: WER of aLL-dialect trained ASR with pool testing and One-dialect
trained ASR with different adaptation and optimization

If we have closer look to table 4.6, we can see that ID-ASR has better results

than NOR3, Egypt3 and LAV3, but it has higher WER than Gulf3. Figure 4.2.18

shows the difference between ID-ASR and DD-ASR, we found that the ID-ASR has

better WER than DD-ASR. But Gulf dialect in DD-ASR scores better WER. Gulf

dialect is the closer to MSA within the dialects in our research, and this might be

the reason. We can not generalize any results from this step. So we decided to use

the same ID-ASR but testing each dialect separately; one at a time.
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Figure 4.2.18: WER of DD-ASR verses ID-ASR where DD-ASR tests only one
dialect while ID-ASR tests a pool of dialects

We use ID-ASR model and test this ASR for specific dialect. We can see that

the higher WER for NOR and LAV. And this what we have discussed earlier about

the difficulty of both of those dialects. The average of specific dialects is almost

equal to pool testing. We need more datasets for both dialects in order to enhance

the performance of our ASR. The available speech for each dialect in our research is

almost 13 hours of speech. So our total is 52 hours for all dialects in this research.

Compare this to high performance ASR that at least have 170 hours of speech;

as most accurate ASR results in different researches. So we tried to reduce the

problem to involve MSA in the whole experiment (170 hours). But as we discuss in

our literature review, the data selection improve the performance of ASR. So if we

get more dialect dataset the results will be better. Table 4.7 lists all the results of

testing ID-ASR for a pool of dialects and a specific dialect at a time. We get the

best results for all datasets while we have HMM-DNN with five hidden layers, 2048
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hidden dimensions, MPE optimization and MFCC as feature extraction.

Table 4.7: WER of ID-ASR with known and pool testing with different adaptation
and optimization

Run type ALL_TT ALL_Gulf ALL_Egypt ALL_LAV ALL_NOR

combined 74.47 67.17 72.51 78.62 78.74

tri1 78.31 73.39 77.39 81.24 81.5

tri2a 77.59 72.9 76.37 80.5 80.15

tri2b 72.86 67.85 71.66 76.26 75.61

tri2b_mmi 71.54 66.18 71.43 74.31 74.98

tri2b_mmi_b0.1 72.11 67.33 71.81 75.13 75.41

tri2b_mpe 70.56 65.05 70.26 73.61 74.16

tri3b 74.61 67.21 72.61 78.96 78.62

tri3b_dnn_2048x5 68.62 58.96 66.22 75.59 75.52

tri3b_dnn_2048x5_fbank 69.01 62.99 67.31 73.37 73.48

tri3b_dnn_2048x5_smb 59.21 51.81 58.53 64.37 63.08

tri3b_dnn_2048x5_smb 64.04 57.53 63.75 68.66 66.93

_fbank

tri4b 72.83 67.83 71.5 76.15 75.7
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Figure 4.2.19: WER of ID-ASR with known and pool testing with different adapta-
tion and optimization

Here, we want to compare the best results we get for each dialect using ID-ASR

and DD-ASR. We get the best results for both models while having HMM-DNN with

five hidden layers, 2048 hidden dimensions, MPE optimization and MFCC as feature

extraction. Table 4.8 and figure 4.2.20 show that ID-ASR has better performance

than DD-ASR for all dialects in this research.

Table 4.8: WER of ID-ASR and DD-ASR testing the same dialect

Dialect DD-ASR ID-ASR Difference

Egyptian 62.99 58.53 4.46

Gulf 54.12 51.81 2.31

LAV 70.71 64.37 6.34

NOR 66.56 63.08 3.48
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Figure 4.2.20: WER of DD-ASR vs ID-ASR when both models test one dialect only

In addition for ID-ASR and testing a pool of dialects, we discuss some adaptation

techniques; MAP, fMLLR and combination of both as earlier models in this research.

Figure 4.2.21 shows that using MAP has 72.83% WER. On the other hand, using

fMLLR has 74.61% WER. This means that using MAP in ID-ASR is better than

using fMLLR. So in this case, we should build the rest of the adaptation on MAP.

And this might happen in some future work.
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Figure 4.2.21: WER of comparing fmllr, Map and combination of both for ID-ASR
with pool testing

4.2.6 Adding bottleneck feature BNF extraction to ID-ASR

The higher performance of ASR is attached with DNN technology. For more in-

formation about BNF review 2.4.4.3. So we employ DNN in the feature extraction

stage, then try some adaptation and optimization techniques. Table 4.9 shows that

using Bottleneck features (BNF), as described in [25], as feature extraction has en-

hance the performance of our ASR. Figure 4.2.22 reflects the data in table 4.9, and

it shows the enhancement of BNF over MFCC.

This is a sample experiment to show how much DNN enhance the performance of

ASR.
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Table 4.9: WER of ID-ASR with bottleneck verses MFCC feature extraction with
different adaptation and optimization

Run type MFCC BNF

tri1 78.31 67.38

tri2a 77.59 67.18

tri3b 74.61 66.45

tri3b_dnn_2048x5 68.62 63.51

tri3b_dnn_2048x5_smb 59.21 58.31

Figure 4.2.22: WER of ID-ASR with bottleneck verses MFCC feature extraction
with different adaptation and optimization
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

Working in this research we have seen that the greater the size of the training dataset

the better the results will be. Also when we look closer into our experiments of Di-

alect and Dialect3, these two different training datasets which are almost has the

same size of training data, but the selection of the data shows that having the dialect

involved in the training enhance the performance of our ASR by 29% for NOR, 21%

for LAV, 16.89% for Gulf and 19.62% for Egyptian dialects.

Also we can see that the performance of ASR with HMM-DNN acoustic model

is better than HMM-GMM acoustic model, as shown in figure 4.2.2 that for the best

dataset HMM-DNN has improved the performance of ASR for 8.99% for Egyptian

dialect, figure 4.2.6 shows that for the best dataset HMM-DNN has improved the

performance of ASR for 11.51% for Gulf dialect, figure 4.2.10 shows that for the

best dataset HMM-DNN has improved the performance of ASR for 6.25% for LAV

dialect and figure 4.2.14 shows that for the best dataset HMM-DNN has improved

the performance of ASR for 12.11% for NOR dialect.
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Most of our experiments has the best results when we had HMM-DNN with five

hidden layers, 2048 hidden dimensions, MPE optimization and MFCC as feature

extraction. For DD-ASR the best results for Egyptian dialect is 62.99%, for Gulf

dialect is 54.12%, for NOR is 66.58% and for ID-ASR the best result is 59.21%. But

for DD-ASR testing LAV dialect, we get the best result while using fbank feature

extraction and it is 69.12%

.

When we start our research, we wonder in case of only MSA trained ASR which

dialect will have the least WER. The results are Egyptian dialect for 70.73%, the

Gulf dialect for 71.01%, LAV dialect for 90.6% and NOR dialect for 96.96%. So the

closest dialect to MSA are Egyptian dialect and Gulf dialect.

In our research, we also compare between MAP and fMLLR adaptation tech-

niques. All the experiment of DD-ASR show that there is no difference between

using MAP or fMLLR or combining them. But in case of ID-ASR, MAP shows

better results than fMLLR as shown in figure 4.2.21. So we will try to build the

rest of the adaptation on MAP as future work and compare the results with what

we have at this phase of our research.

Using the technology of DNN enhance the performance of ASR. We try a short

experience to involve DNN in feature extraction, and only apply it on ID-ASR. We

can see through the results that we get better performance using Bottleneck feature

extraction, which is clear in figure4.2.22. So we can say that employing DNN in

feature extractions and Acoustic Model enhance the performance of Arabic ASR.
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5.2 Future work

To get more speech for each dialect, and try building the dependent dialect ASR

and check the performance. We need at least 170 -as most reliable ASRs in other

researches- hours for each dialect to get most of the dialect. And if we can get Iraqi

dialect as well to add to our ASR, since we can not find a good quality source to

experiment Iraqi dialect.

The used lexicon was provided by Qatar Computing Research Institute QCRI,

which had released 2014. The lexicon is the pronunciation dictionary for Modern

Standard Arabic ASR. We need to add to this lexicon all the words pronunciation

of the dialects in order to enlarge the pronunciation library.

We need to work on the Language Model LM as well, in our research we depend

on the training data to create LM. We need to get more dialectical text to build a

good source for LM. Also we can include the DNN technology to improve the per-

formance of our LM. In our work, we build Trigram LM. The recent work, they are

building 4-gram LM. We might build 4-gram LM and check the performance of ASR.

We need to do more experiments on Bottleneck feature extraction and try to

change some parameters to improve the performance of ASR. Also we might try

i-vector feature extraction, as described in [18, 78], as well and check if this works

with dialectical speech. And evaluate each method for our dialects.
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